Annals of Pediatric Gastroenterology and Hepatology ISPGHAN

Register      Login

VOLUME 1 , ISSUE 4 ( October-December, 2019 ) > List of Articles


Deep Paediatric Gastroenterology with Blockchain

Dr. Yogesh Waikar

Keywords : Deep learning, Artificial Intelligence, Block chain, Bitcoin, Paediatric Gastroenterology, Paediatric Endoscopy, Artificial neural networks

Citation Information : Waikar DY. Deep Paediatric Gastroenterology with Blockchain. Ann Pediatr Gastroenterol Hepatol 2019; 1 (4):1-4.

DOI: 10.5005/jp-journals-11009-0031

License: CC BY-NC 4.0

Published Online: 04-07-2022

Copyright Statement:  Copyright © 2019; The Author(s).


PDF Share
  1. Topol EJ. Individualized medicine from prewomb to tomb. Cell. 2014;157(1):241-253. doi: 10.1016/j.cell.2014.02.012
  2. Voosen, Paul. “The AI detectives.” Science 357 6346 (2017): 22-27.
  3. Chollet F, Allaire JJ Deep Learning with R. Manning Publications Company; 2018
  4. Yu Y, Wang J, Ng CW, et al. Deep learning enables automated scoring of liver fibrosis stages. Sci Rep. 2018;8(1):16016. Published 2018 Oct 30. doi: 10.1038/s41598-018-34300-2
  5. Koichiro Yasaka, Hiroyuki Akai, Osamu Abe, and Shigeru Kiryu Deep Learning with Convolutional Neural Network for Differentiation of Liver Masses at Dynamic Contrast-enhanced CT: A Preliminary Study Radiology 2018 286:3, 887-896
  6. Kudo, Shin-ei et al. Artificial Intelligenceassisted System Improves Endoscopic Identification of Colorectal Neoplasms Clin Gastroenterol Hepatol. 2019 Sep 13. pii: S1542-3565(19)30997-8. doi: 10.1016/j.cgh.2019.09.009. [Epub ahead of print]
  7. Krishnan, K.R., Midhila, M., and Sudhakar, R. (2018). Tensor flow based analysis and classification of liver disorders from ultrasonographyimages. In Computational Vision and Bio Inspired Computing, D.J. Hemanth and S. Smys, ed. (Tamil Nadu, India), pp. 734-743.
  8. Pang S, Wang S, Rodriguez-Paton A, Li P, Wang X. An artificial intelligent diagnostic system on mobile Android terminals for cholelithiasis by lightweight convolutional neural network. PLoS One. 2019;14(9):e0221720. Published 2019 Sep 12. doi: 10.1371/journal.pone.0221720
  9. Patel NM, Michelini VV, Snell JM, et al. Enhancing Next-Generation Sequencing-Guided Cancer Care Through Cognitive Computing. Oncologist. 2018;23(2):179-185. doi: 10.1634/theoncologist.2017-0170
  10. Urban G, Tripathi P, Alkayali T, et al. Deep Learning Localizes and Identifies Polyps in Real Time With 96% Accuracy in Screening Colonoscopy. Gastroenterology 2018;155(4): 1069-78 e8.
  11. Wision AI publishes data from first-ever prospective, randomized controlled trial evaluating AI in advanced diagnostics.
  12. Wang P, Berzin TM, Glissen Brown JR, et al. Real-time automatic detection system increases colonoscopic polyp and adenoma detection rates: a prospective randomised controlled study. Gut 2019:gutjnl-2018-317500
  13. Wimmer G, Vecsei A, Uhl A. CNN transfer learning for the automated diagnosis of celiac disease. Image Processing Theory Tools and Applications (IPTA), 2016 6th International Conference on. IEEE; 2016:1-6.
  14. Shung, Dennis L, Taylor RA, Tay JK et al Validation of a Machine Learning Model That Outperforms Clinical Risk Scoring Systems for Upper Gastrointestinal Bleeding Gastroenterology. 2019Sep25.pii:S00165085 (19)413425. doi: 10. 1053/j.gastro.2019.09.009.[Epub ahead of print]
  15. Reismann J, Romualdi A, Kiss N, Minderjahn MI, Kallarackal J, Schad M, et al. (2019) Diagnosis and classification of pediatric acute appendicitis by artificial intelligence methods: An investigator-independent approach. PLoS ONE 14(9): e0222030.
  16. Hsieh CH, Lu RH, Lee NH, Chiu WT, Hsu MH, Li YC. Novel solutions for an old disease: Diagnosis of acute appendicitis with random forest, support vectors machines, and artificial neural networks. Surgery. 2011;149: 87-93. pmid:20466403
  17. Chen D, Wu L, Li Y et al Comparing blind spots of unsedated ultrafine, sedated, and unsedated conventional gastroscopy with and without artificial intelligence: a prospective, singleblind, 3-parallel-group, randomized, singlecenter trial. Gastrointest Endosc. 2019 Sep 18. pii: S0016-5107(19)32249-7. doi: 10.1016/j.gie. 2019.09.016. [Epub ahead of print]
  18. Aoki, T., Yamada, A., Aoyama, K., Saito, H., Fujisawa, G., Odawara, N., Kondo, R., Tsuboi, A., Ishibashi, R., Nakada, A., Niikura, R., Fujishiro, M., Oka, S., Ishihara, S., Matsuda, T., Nakahori, M., Tanaka, S., Koike, K. and Tada, T. (2019), Clinical usefulness of a deep learning-based system as the first screening on small-bowel capsule endoscopy reading. Digestive Endoscopy. doi: 10.1111/den.13517
  19. Gatos I, Tsantis S, Spiliopoulos S, et al. A Machine-Learning Algorithm Toward Color Analysis for Chronic Liver Disease Classification, Employing Ultrasound Shear Wave Elastography. Ultrasound Med Biol 2017;43(9):1797-810.
  20. Mielens JD, Hoffman MR, Ciucci MR, et al. Application of classification models to pharyngeal high-resolution manometry. J Speech Lang Hear Res 2012;55(3):892-902.
  21. Zeevi D, Korem T, Zmora N, et al. Personalized Nutrition by Prediction of Glycemic Responses. Cell 2015;163(5):1079-94.
  22. Michelson M, Reuter K. The significant cost of systematic reviews and meta-analyses: A call for greater involvement of machine learning to assess the promise of clinical trials. Contemp Clin Trials Commun. 2019;16:100443. Published 2019 Aug 25. doi: 10.1016/j.conctc.2019.100443
  23. Chen HS, Jarrell JT, Carpenter KA, Cohen DS, Huang X. Blockchain in Healthcare: A Patient- Centered Model. Biomed J Sci Tech Res. 2019;20(3):15017-15022.
  24. Nakamoto S (2008) Bitcoin: A Peer-to-Peer Electronic Cash System
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.